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We develop a Lagrangian model of both one-particle† and two-particle turbulent
diffusion in high Reynolds number and low Froude number stably stratified non-
decaying turbulence. This model is a kinematic simulation (KS) that obeys both the
linearized Boussinesq equations and incompressibility. Hence, turbulent diffusion is
anisotropic and is studied in all three directions concurrently with incompressibility
satisfied at the level of each and every trajectory.

Horizontal one-particle and two-particle diffusions are found to be independent of
the buoyancy (Brünt–Väissälä) frequency N. For one-particle diffusion we find that

〈(xi(t)− xi(t0))2〉 ∼ u′2(t− t0)2 for t− t0 � L/u′,

and

〈(xi(t)− xi(t0))2〉 ∼ u′L(t− t0) for t− t0 > L/u′,
where i = 1, 2 and u′ and L are a r.m.s. velocity and a length-scale of the energy-
containing motions respectively, and

〈(x3(t)− x3(t0))
2〉 ' u′2

N2
= L2Fr2 for

2π

N
� t− t0.

This capping of one-particle vertical diffusion requires the consideration of the entire
three-dimensional flow, and we show that each and every trajectory is vertically
bounded for all times if the Lagrangian vertical pressure acceleration a3 is bounded
for all times. Such an upper bound for a3 can be derived from the linearized Boussinesq
equations as a consequence of the coupling between vertical pressure acceleration and
the horizontal and vertical velocities.

Two-particle vertical diffusion exhibits two plateaux. The first plateau’s scaling is
different according to whether the initial separation ∆0 between the two particles is
larger or smaller than η, the smallest length-scale of the turbulence:

〈∆x2
3〉 ' ∆2

0Fr
2(L/η)4/3 for ∆0 6 η

〈∆x2
3〉 '

(
∆0/L

)2/3
L2Fr2 for ∆0 > η

}
for

2π

N
< t− t0 < L

u′
.

The second plateau is reached when the two particles become statistically independent,
and therefore

〈∆x2
3〉 ' 2L2Fr2 for t− t0 � L/u′.

The transition between the two plateaux coincides with the time when the two particles
start moving significantly apart in the horizontal plane.

† In this paper ‘particle’ and ‘fluid element’ are synonymous.
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1. Introduction

Kinematic simulation (KS) is a unified Lagrangian model of one- and two- and in-
deed multi-particle turbulent diffusion where incompressibility is enforced by construc-
tion in the generation of every particle trajectory, the energy spectrum is prescribed
according to the type of turbulence considered and where the effects of small-scale
flow structure on Lagrangian statistics are taken into account (Fung et al. 1992; Elliott
& Majda 1996; Fung & Vassilicos 1998; Malik & Vassilicos 1999). As such, KS should
be contrasted with Lagrangian stochastic models of turbulent diffusion which do not
incorporate small-scale flow structure effects and which are by construction different
models for one- and two-particle statistics. Stochastic models rely, at least in practice,
on Wiener processes which are used to model Lagrangian velocities in one-particle
models (van Dop, Nieuwstadt & Hunt 1985; Thomson 1987) and Lagrangian relative
accelerations in two-particle models (see Pedrizzetti & Novikov 1994; Heppe 1997).

The small-scale geometry of one-particle trajectories does not affect their average
and variance statistics because these statistics are to a great extent determined by the
large energy-containing scales of the turbulence. However, as demonstrated by Fung
et al. (1992), Fung & Vassilicos (1998) and Malik & Vassilicos (1999), two-particle
statistics are very significantly influenced by small-scale spatio temporal flow structure,
in particular eddying, straining and streaming regions (Perry & Chong 1987; Wray
& Hunt 1990) and their time-dependence.

KS does not offer any particular advantage over other models of one-particle
diffusion in the homogeneous isotropic case. However, the enforced incompressibil-
ity in KS, trajectory by trajectory, does mean that KS of non-isotropic turbulent
flows can generate one-particle statistics in different directions in accordance with
incompressibility. To our knowledge no Lagrangian model of one-particle turbulent
diffusion to date has been developed to achieve such an objective. In this paper
we develop a KS of stably stratified turbulence where one-particle diffusion can be
studied concurrently under the constraint of incompressibility in all three directions,
the direction of stratification and the plane normal to it.

As it is a unified model of both one- and two-particle turbulent diffusion, we also use
the KS model of stably stratified turbulence to investigate two-particle statistics and
the effect of small-scale turbulent flow structure on these statistics. The fundamental
working hypothesis on which KS is based (Fung & Vassilicos 1998; Malik & Vassilicos
1999) is that a detailed and quantitatively precise modelling of the small-scale Eulerian
flow structure is not required for an accurate determination of Lagrangian two-particle
statistics, and that it is sufficient to incorporate in the KS model qualitatively correct
incompressible Eulerian turbulent-like small-scale flow structure. The KS model is
based on a kinematically simulated Eulerian velocity field which is generated as a sum
of random incompressible Fourier modes. This velocity field incorporates turbulent-
like flow structures, that is eddying, straining and streaming regions, in every realiza-
tion of the Eulerian velocity field, and the Lagrangian model operates by integrating
individual particle trajectories in many realizations of this velocity field. Thus, KS
generates particle trajectories that are smooth and non-Markovian in a way directly
determined by the turbulent-like incompressible Eulerian flow structures. Compar-
isons with direct numerical simulation results of two-particle statistics in stationary
isotropic turbulence have shown good agreement with KS (Malik & Vassilicos 1999).
Furthermore, the KS prediction for Richardson’s constant G∆ in three-dimensional
isotropic homogeneous turbulence agrees well with Tatarski’s (Tatarski 1960) exper-
imental measurements (see Elliott & Majda 1996; Flohr & Vassilicos 2000).
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In stratified turbulence, the stratification induces waves which interact with the
turbulent velocity field and modify it. The effect of stratification on turbulent diffusion
is therefore to modify the velocity field and thereby trap fluid elements and scalar
concentrations in oscillatory motion. Turbulent diffusion in stably stratified turbulence
has been studied with stochastic models (Csanady 1964; Pearson, Puttock & Hunt
1983; Heppe 1997), Direct numerical simulations (DNS) (Kimura & Herring 1996)
and laboratory experiments (Britter et al. 1983). Stochastic models (Csanady 1964;
Pearson et al. 1983; Heppe 1997) predict a vanishing vertical turbulent diffusivity
in both decaying and non-decaying stably stratified turbulence, and the evidence
from both DNS (Kimura & Herring 1996) and laboratory experiments (Britter et
al. 1983) is that a régime and a range of time scales indeed exist where there
is no vertical diffusion in stably stratified decaying turbulence. However no such
evidence is currently available for stably stratified non-decaying turbulence. Laboratory
experiments and DNS of forced stably stratified turbulence are difficult to perform and
in fact DNS is also quite severely limited in Reynolds numbers and integration time.

The predictions of stochastic models for high Reynolds number non-decaying stably
stratified turbulence need to be discussed in comparison with predictions of other
models. Indeed stochastic modelling is based on the assumption that the pressure
force in the Navier–Stokes equation is effectively random and delta-correlated in
time in the limit of infinite Reynolds numbers. Furthermore, these stochastic models
are one-dimensional and do not enforce incompressibility on every trajectory. The
purpose of the present paper is to use KS for stably stratified non-decaying turbulence
to investigate turbulent diffusion in the vertical and horizontal directions concurrently
under the constraint of incompressibility and in the limit of high Reynolds numbers
without direct assumptions on the pressure force. Following the stochastic modelling
of Csanady (1964), Pearson et al. (1983) and Heppe (1997) and the DNS of Kimura
& Herring (1996) our KS is based on the Boussinesq equations.

2. Lagrangian Boussinesq equations
Given a stably stratified fluid at static equilibrium, with pressure p(x3) and density

ρ(x3) varying only in the direction x3 of stratification such that dp/dx3 = −ρg
where g = (0, 0,−g) is the gravitational acceleration vector and x = (x1, x2, x3), the
Boussinesq equations determine perturbations around this equilibrium. Assuming
the perturbation velocity field u(x, t) = (u1, u2, u3) to be incompressible, and the
perturbation density ρ′(x, t) to be much smaller than ρ (ρ′ � ρ) and denoting the
perturbation pressure field by p′, these equations are

D

Dt

ρ′

ρ
= −u3

1

ρ

dρ

dx3

, (2.1)

D

Dt
u = −1

ρ
∇p′ + ρ′

ρ
g, (2.2)

∇ · u = 0, (2.3)

where we have omitted terms describing molecular diffusion and viscosity and D/Dt =
∂/∂t + u · ∇. Even though strictly speaking, ρ is a function of x3, in the Boussinesq
approximation one considers a layer of stratified fluid of vertical extent small enough
for ρ and ∂ρ/∂x3 to be effectively independent of x3 within the layer, and the thickness
of this layer can be estimated as being much smaller than H = ρ/|dρ/dx3| (stable
stratification requires dρ/dx3 < 0). Setting Θ = ρ′/ρ and a = (a1, a2, a3) = −(1/ρ)∇p′,
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the Lagrangian Boussinesq equations for the Lagrangian coordinates x1(t), x2(t), x3(t)
of fluid particles are

ẍ1(t) = a1(t), (2.4)

ẍ2(t) = a2(t), (2.5)

ẍ3(t) = a3(t)−Θ(t)g, (2.6)

Θ̇(t) =
u3(t)

H
, (2.7)

where Θ(t) and u3(t) are the values of Θ and u3 at the points visited by fluid element
trajectories at time t. From (2.6) and (2.7) we obtain the following Lagrangian
Boussinesq equation for vertical diffusion:

ẍ3 = a3 −N2(x3 − x3(t0))− gΘ(t0) (2.8)

where N2 = g/H = g|dρ/dx3|/ρ and t0 is the time of release.

In the absence of pressure acceleration a3, fluid elements simply oscillate around
x3(t0)− (g/N2)Θ(t0) with the buoyancy (Brünt–Väissälä) frequency N which is char-
acteristic of stable stratification. Stochastic models of vertical diffusion in turbulent
stably stratified flows (Csanady 1964; Pearson et al. 1983; Heppe 1997; Kimura &
Herring 1996) start from the assumption that the vertical pressure acceleration is
effectively a random acceleration delta-correlated in time. One consequence of this
assumption is the decoupling of vertical and horizontal diffusion from the outset.
However the incompressibility requirement (2.3) imposes a coupling between vertical
and horizontal displacements and a dependence of the vertical pressure acceleration
on both. Indeed, the incompressibility requirement (2.3) applied to (2.2) implies that

∇2p′ = −ρg ∂Θ
∂x3

− ρ ∂

∂xi
uj

∂

∂xj
ui (2.9)

with a summation over i, j. This Poisson equation is readily solved by Fourier
transformation leading to

1

ρ

∂

∂x3

p′ = −g
∫

dk eik·x k2
3

k2
Θ̃(k, t)

+ i

∫
dk eik·x k3

k2

∫
dk′k′i(kj − k′j)ũj(k′, t)ũ(k − k′, t) (2.10)

where Θ̃(k, t) and ũi(k, t) are the Fourier transforms of Θ(x, t) and ui(x, t) respectively
with wavenumber k = (k1, k2, k3) and k2 = k · k. The Lagrangian vertical pressure
acceleration a3(t) is therefore given by

a3(t) = g

∫
dk eik·x(t) k

2
3

k2
Θ̃(k, t)

− i

∫
dk eik·x(t) k3

k2

∫
dk′k′i(kj − k′j)ũj(k′, t)ũ(k − k′, t) (2.11)

where the dependence on the Lagrangian trajectory x(t) is manifest for all directions
vertical and horizontal.
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Figure 1. The wavevector kmn and the Craya–Herring frame c1, c2, k̂mn = kmn/kn which is
orthonormal. The frame e1, e2, e3 is also orthonormal, e1, e2 are horizontal and e3 vertical and θn is
the angle between e3 and kmn.

Rather than make an assumption about a3 and artificially decouple horizontal from
vertical displacements, with KS one directly models the three-dimensional Eulerian
velocity field u(x, t) in accordance with certain turbulence statistics and physical
requirements and solves ẋ(t) = u(x(t), t). Hence KS can in particular be used to
investigate the consistency of assumptions on a3 with incompressible turbulent-like
velocity fields. We now detail how and the régime for which we model the Eulerian
velocity field u(x(t), t) of a stably stratified velocity field.

3. Linearized Eulerian Boussinesq equations
Consider an initial velocity field u(x, 0) with spatial fluctuations over a wide range

of length scales, the smallest of these length scales being η. In the limit where the
microscale Froude number is much smaller than 1, i.e. Frη ≡ u(η)/Nη � 1 where
u(η) is the characteristic initial velocity fluctuation at that scale, and in the case
where u(η) corresponds to the smallest characteristic time scale in the initial flow, the
Eulerian Boussinesq equations (2.1) and (2.2) may be approximated by their linear
counterparts

∂

∂t
Θ = −u3

1

ρ

d

dx3

ρ, (3.1)

∂

∂t
u = −1

ρ
∇p′ +Θg (3.2)

(see Hanazaki & Hunt 1996). Of course, the small Froude number limit cannot
guarantee that (3.2) is a good approximation for the horizontal components of u. In
the horizontal plane the linear approximation (3.2) may be expected to hold for times
t smaller than an integral time scale L/u′ where L is a length scale characteristic of
the energy-containing motions of the turbulence and u′ a r.m.s. velocity.

We use the Fourier transform ũ(k, t) of u(x, t) to solve equations (3.1) and (3.2)
so that the incompressibility constraint (2.3) is transformed into k · ũ(k, t) = 0 whilst
the pressure field gradient is transformed into a vector parallel to k in Fourier space.
Letting e3 be the unit vector in the direction of stratification and e1, e2 two unit
vectors normal to each other and to e3 (so that x = x1e1 +x2e2 +x3e3 and g = −ge3),

the Craya–Herring frame (see figure 1) is given by the unit vector k̂ = k/k and
c1 = e3 × k/|e3 × k|, c2 = k × c1/|k × c1|. In the Craya–Herring frame the Fourier
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transformed velocity field ũ(k, t) lies in the plane defined by c1 and c2, i.e.

ũ(k, t) = ṽ1(k, t)c1 + ṽ2(k, t)c2, (3.3)

and is therefore decoupled from the pressure fluctuations which are along k. In-
compressible solutions of equations (3.1) and (3.2) in Fourier space and in the
Craya–Herring frame are (Godeferd & Cambon 1994)

ṽ1(k, t) = ṽ1(k, 0), (3.4)

ṽ2(k, t) = ṽ2(k, 0) cos (Nt sin θ), (3.5)

Θ̃(k, t) =
N

g
ṽ2(k, 0) sin (Nt sin θ), (3.6)

where θ = θ(k) is the angle between k and e3 and the initial conditions are ṽ1(k, 0),
ṽ2(k, 0) and Θ̃(k, 0) = 0 (zero initial potential). Because u(η) corresponds to the
smallest time scale in the turbulence, the condition Frη � 1 which is required for
the linear solutions (3.4), (3.5), (3.6) to approximate the incompressible solution of
the full nonlinear equations (2.1)–(2.2) implies

Fr =
u′

NL
� η

u(η)

/
L

u′

where L is a length scale characteristic of the energy-containing motions of the
turbulence and u′ a r.m.s. velocity (Hanazaki & Hunt 1996). Note that the ratio of
inner to outer time scales (η/u(η))/(L/u′) decreases as the Reynolds number increases.
Hence the linearized Eulerian Boussinesq equations are valid for smaller and smaller
Froude numbers as the Reynolds numbers is made larger and larger. Also, strictly
speaking, L should be smaller than H and the time t smaller than L/u′.

We now introduce the KS model of the turbulence with which we specify the initial
conditions ṽ1(k, 0) and ṽ2(k, 0) so that (3.4), (3.5), (3.6) represent the linear distortion
of the turbulence by the stratification. In this model the Lagrangian vertical pressure
acceleration a3(t) is determined by the linear part of (2.11), i.e.

a3(t) = g

∫
dk eik·x(t) k

2
3

k2
Θ̃(k, t) = N

∫
dk eik·x(t) k

2
3

k2
ṽ2(k, 0) sin (Nt sin θ) (3.7)

where use is made of (3.6).

4. The KS Eulerian velocity field
The initial three-dimensional velocity perturbation to the stably stratified equilib-

rium is taken to be incompressible, isotropic and with a − 5
3

large-wavenumber energy

spectrum. (Some observational support for a − 5
3

energy spectrum in the ocean has
been obtained at depths where the Froude number is much smaller than one (see
Gargett et al. 1984).) The Eulerian velocity field synthesized for homogeneous and
isotropic three-dimensional KS is indeed such a field and we now use it to model
these initial turbulent velocity fluctuations. Starting from the Fourier representation

u(x, 0) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
ũ(k, 0) eik·x dk

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

[ṽ1(k, 0)c1(k) + ṽ2(k, 0)c2(k)] eik·x dk, (4.1)
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where ṽ∗1(k, 0) = −ṽ1(−k, 0) and ṽ∗2(k, 0) = −ṽ2(−k, 0), the KS velocity field is con-
structed by discretizing (4.1), i.e

u(x, 0) =

Nk∑
n=1

Mθ∑
m=1

Jφ∑
j=1

k2
n sin θm∆kn∆θm∆φj eikmnj ·x

× [ṽ1(kmnj , 0)c1(kmnj) + ṽ2(kmnj , 0)c2(kmnj)], (4.2)

with obvious notation and kmnj = kn(sin θm cosφj, sin θm sinφj, cos θm). Note that
u(x, 0) is three-dimensional and incompressible by construction because it is ap-
propriately cast in the Craya–Herring representation. The directions and orientations
of kmnj are chosen randomly for isotropy (see Fung et al. 1992; Malik & Vassilicos
1999). In this particular study, we take θm = (m− 1)π/(Mθ − 1) and Mθ = 20 and for
each pair n, m we randomly pick out one φj between 0 and 2π and φj + π, i.e. Jφ = 2
and ∆φj = π, and the notation φj should be replaced by φnm. Hence,

u(x, 0) = 2πRe

{
Nk∑
n=1

Mθ∑
m=1

k2
n sin θm∆kn∆θmeikmn ·x

×[ṽ1(kmn, 0)c1(kmn) + ṽ2(kmn, 0)c2(kmn)]

}
(4.3)

where kmn = kn(sin θm cosφnm, sin θm sinφnm, cos θm) (see figure 1) and Re stands for
real part. The choice of discretized wavenumbers is made with reference to the energy
spectrum E(k) which is chosen such that

E(k) = E0L0 (kL0)
−5/3 (4.4)

for k > L0
−1 and

E(k) = E0L0 (kL0)
4 (4.5)

for k 6 L0
−1, L0

−1 being the energy-containing scale where the energy spectrum takes
its maximum value and E0 is a characteristic energy of the energy-containing eddies
at L0

−1. As observed by Malik & Vassilicos (1999), the detailed modelling of the
dissipation range has no impact on two-particle statistics even at short times, and we
simply introduce a sharp viscous cutoff to this spectrum by setting

E(k) = 0 (4.6)

for k > kmax = 2π/η and we chose

kn = kmin

(
kmax

kmin

)(n−1)/Nk−1

and kmin =
1

4L0

.

In this study Nk = 50, except in figures 3 and 4 where Nk = 1000 (but the results
plotted in figures 3 and 4 are effectively the same when Nk = 50). To ensure that the
energy spectrum of the velocity field (4.3), and more generally (4.2), is given by (4.4),
(4.5) and (4.6) we determine the amplitudes of ṽ1(k, 0) and ṽ2(k, 0) by

2|ṽ1(k, 0)|2 = |ṽ2(k, 0)|2 =
2

3

E(k)

k4∆k
(4.7)

(see Fung et al. 1992; Malik & Vassilicos 1999), and the phases of ṽ1(k, 0) and ṽ2(k, 0)
are chosen randomly to enforce isotropy of the initial perturbation field.

We use the following definitions of u′ and L, a r.m.s. velocity and integral length
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scale (longitudinal) of the initial isotropic turbulence:

u′2 =
1

2

∫
E(k) dk, L =

3π

4

∫
k−1E(k) dk∫
E(k) dk

.

5. The KS model of turbulent diffusion in high Reynolds number and low
Froude number stratified non-decaying turbulence

KS is a Lagrangian model of turbulent diffusion and should therefore be evaluated
on the basis of the Lagrangian statistics it generates. The present KS model of
turbulent diffusion in stratified non-decaying turbulence consists of solving

ẋ(t) = u(x(t), t) (5.1)

to obtain a statistical ensemble of Lagrangian trajectories x(t) in a velocity field

u(x, t) = 2πRe

{
Nk∑
n=1

Mθ∑
m=1

k2
n sin θm∆kn∆θmeikmn·x

× [ṽ1(kmn, t)c1(kmn) + ṽ2(kmn, t)c2(kmn)]

}
(5.2)

where

ṽ1(kmn, t) = ṽ1(kmn, 0), (5.3)

ṽ2(kmn, t) = ṽ2(kmn, 0) cos (Nt sin θm), (5.4)

and ṽ1(kmn, 0), ṽ2(kmn, 0) are specified in § 4 in accordance with an energy spectrum
that has a − 5

3
large-wavenumber scaling. This velocity field is not isotropic and results

from the linear Boussinesq distortion (3.4) and (3.5) applied to the initially isotropic
velocity field (4.3).

At this stage it is important to state that this KS model is a finite Reynolds number
model in spite of the fact that (5.3) and (5.4) are obtained from solving the non-
dissipative linear Boussinesq equations (3.1) and (3.2). Indeed, we have not included
viscous forces in the Boussinesq equations but we have set a large-wavenumber cutoff
kmax = 2π/η for the initial turbulent velocity field’s energy spectrum which we mean
to represent the equilibrium viscous dissipation scale of the non-decaying turbulence.
Hence, we incorporate viscous effects in the initial turbulent velocity perturbation field
but not in the linear Boussinesq equations which we only use to calculate the linear
distortion of this field by the density stratification. This approximation is appropriate
for linearly distorted non-decaying turbulence and is valid in the double limit of large
but finite Reynolds numbers Re (viscous forces small compared to inertial forces)
and small Froude numbers (inertial forces small compared to buoyancy forces). In
accordance with Kolmogorov’s equilibrium theory we may expect that Re ∼ (L/η)4/3,
and in this paper the ratio of the outer to the inner length scale L/η of the scale-
invariant range varies between 4 and 24 (Lkmax varies between 26 and 146). Even
though we can specify the ratio L/η we cannot give a value for the corresponding
Reynolds number because we do not know the coefficient linking Re to (L/η)4/3.

We start by computing u2
1, u

2
2 and u2

3 as functions of time (see figure 2) where the
overbars denote an average over 20 positions x taken from 40 realizations of the flow.
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Figure 2. Eulerian velocity variance as function of time. From isotropy to anisotropy: continuous

line u2
1(t)/ 2

3
u′2, dashed line u2

2(t)/ 2
3
u′2, dotted line u2

3(t)/ 2
3
u′2, as functions of tN/2π; Fr = 0.0085,

Lkmax = 46. u2
1(0) ' u2

2(0) ' u2
3(0) ' 2

3
u′2, the slight difference between u2

1(0), u2
2(0) and u2

3(0) is due
to the difficulty of generating an initial field that is exactly isotropic with a restricted number of

discrete Fourier modes; note that for the same reason u2
1(t) and u2

2(t) are not exactly the same either,

in fact their difference remains of the same order as that between u2
1(0) and u2

2(0).

We find, as expected, that u2
1 ' u2

2 ' u2
3 ' 2

3
u′2 at time t = 0, and that u2

1, u
2
2 decrease

towards a constant and u2
3 decreases and oscillates around a lower constant within

one characteristic buoyancy time 2π/N. This decrease in kinetic energy corresponds
to an increase in potential energy, and these constants are in satisfactory agreement
with the predictions of Hanazaki & Hunt (1996), namely that

lim
t→∞

u2
1(t)

u2
1(0)

=
u2

2(t)

u2
2(0)

= 7
8

and

lim
t→∞

u2
3(t)

u2
3(0)

= 1
2

when the initial potential energy is zero.
Hence, the Eulerian velocity field does indeed develop a well-defined anisotropy as a

consequence of the stable stratification with a clear depletion of the turbulence in the
vertical. Furthermore, once this depletion has set in, the flow is also effectively non-
decaying. We release and track fluid elements to evaluate Lagrangian statistics after
this depletion has set in.† Specifically we release the fluid elements in the stratified
turbulence at times t0 = (10+δ)2π/N, where δ is a different random number between
−1 and 1 for different trajectories in order to avoid an initial in-phase oscillation of
all particles together and allow what may be a more realistic particle release.

To demonstrate that the Lagrangian turbulence is non-decaying and non-isotropic
we have calculated the Lagrangian mean-square velocities as functions of time for
a variety of Froude numbers all smaller than 1 since our model is not expected to
be valid for Fr larger than 1. We use the notation uL(t) = u(x(t), t) for Lagrangian
velocities, and the Lagrangian mean-square velocity components that we have calcu-

† Godeferd et al. (1997) attempted a KS model of turbulent diffusion based on a EDQNM2
energy spectrum in order to introduce the anisotropy from the onset and not purely via the action of
linear Boussinesq distortion. It is hard to comment on this paper however because it contains only
one result obtained with KS without discussion of the limit of validity of Lagrangian calculations
(Froude numbers, time ranges, etc).
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Figure 3. Non-dimensionalized KS Lagrangian mean-square velocities plotted against non-dimen-
sionalized time (t− t0)N/2π, Fr = 0.0085, Lkmax = 46 and the KS uses 20 000 modes. The ensemble
average 〈· · ·〉 is taken over 20 trajectories from 40 different realizations. The convention is as follows:
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Figure 4. Non-dimensionalized KS Lagrangian velocity correlations for the same case as in figure 3.
(a) Horizontal velocity correlation 〈uL1(t0)uL1(t0 + t)/u′2〉 as a function of non-dimensionalized
time (t − t0)u′/L. (b) Vertical velocity correlation 〈uL3(t0)uL3(t0 + t)〉/u′2 as a function of non-di-
mensionalized time (t− t0)N/2π. Continuous line: λ = 0, dashed line: λ = 1.

lated are 〈u2
L1(t)〉, 〈u2

L2(t)〉, 〈u2
L3(t)〉 where the brackets 〈· · ·〉 signify an average taken

over twenty Lagrangian trajectories in forty different realizations of the turbulent-like
velocity field. A representative example of our results is given in figure 3 where
the time-axis is non-dimensionalized with 2π/N. We find that all three mean-square
velocity components fluctuate around a constant value which is almost the same for
〈u2
L1(t)〉 and 〈u2

L2(t)〉 but is clearly smaller for 〈u2
L3(t)〉. This is a demonstration that the

Lagrangian turbulence is non-decaying and that it is also non-isotropic in the sense
that the Lagrangian kinetic energy is depleted in the direction of stratification.

We have also calculated the Lagrangian correlations 〈uL1(t0)uL1(t)〉, 〈uL2(t0)uL2(t)〉
and 〈uL3(t0)uL3(t)〉 as functions of time and find that whereas 〈uL1(t0)uL1(t)〉 and
〈uL2(t0)uL2(t)〉 are the same within statistical errors, 〈uL3(t0)uL3(t)〉 displays a very
different behaviour characterized by well-defined regular oscillations of frequency
N (see figure 4a, b). However, in the horizontal plane normal to the direction of
stratification the Lagrangian integral time scale is significantly larger than L/u′. As
can be seen in figure 4(a), the Lagrangian decorrelation in the horizontal plane is
rather slow. Following Fung & Vassilicos (1998) and Malik & Vassilicos (1999) it is
possible to increase this degree of decorrelation in the model and we introduce in
every mode of the velocity field the option of an extra time oscillation of frequency
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proportional to the eddy turnover frequency
√
k3
nE(kn) of the mode. Specifically, we

replace (5.2) with

u(x, t) = 2πRe

{
Nk∑
n=1

Mθ∑
m=1

k2
n sin θm∆kn∆θmei(kmn·x+ωmnt)

× [ṽ1(kmn, t)c1(kmn) + ṽ2(kmn, t)c2(kmn)]

}
(5.5)

where ωmn = λ
√
k3
nE(kn) and in this paper we investigate both options, λ = 1 and

λ = 0.
Some discussion is in order at this stage. The oscillations of frequency ωmn =√
k3
nE(kn) may be interpreted as modelling the Lagrangian decorrelating effect of

the nonlinear advection which we have neglected in our treatment of the Boussinesq
equations. Indeed this linear approximation is satisfactory in the limit Frη � 1;

however in the same limit, the eddy turnover frequencies
√
k3
nE(kn)� N so that the

replacement of (5.2) by (5.5) may be expected to introduce the desired Lagrangian
decorrelation in the horizontal plane without destroying the well-defined regular
vertical Lagrangian oscillation of frequency N. Our results, examples of which are
plotted in figure 4, justify this expectation. Note in particular that with the introduction
of the frequencies ωmn in u(x, t), 〈uL1(t0)uL1(t)〉 drops down to 0 at about t− t0 ' L/u′
(see figure 4a and the same holds for 〈uL2(t0)uL2(t)〉), whilst the frequencyN oscillations
in 〈uL3(t0)uL3(t)〉 remain largely unaffected even though some extra decorrelation has
also been introduced in the direction of stratification (see figure 4b).

In the two sections that follow we report the results concerning one- and two-
particle statistics obtained with our KS model of turbulent diffusion for high Reynolds
number and low Froude number non-decaying turbulence.

6. One-particle turbulent diffusion
The KS model of turbulent diffusion in stably stratified non-decaying turbulence can

be used to calculate diffusion in both horizontal and vertical directions concurrently
and in agreement with incompressibility trajectory by trajectory. We have seen in
§ 5 that for t > t0 horizontal Lagrangian velocities are statistically stationary in the
sense that 〈u2

L1(t)〉 and 〈u2
L2(t)〉 remain constant in time, and from now on we use the

notation τ = t − t0. As shown by Taylor (1921), stationarity of Lagrangian statistics
and a finite integral time scale TL imply

〈(xi(τ)− xi(0))2〉 ' 〈u2
Li〉τ2 for τ� TL, (6.1)

and

〈(xi(τ)− xi(0))2〉 ' 2〈u2
Li〉TLτ for τ� TL, (6.2)

where i = 1, 2.
The laws (6.1) and (6.2) are indeed observed in our KS (see figures 5a and 6a), both

when λ = 0 and λ = 1. When λ = 0 TL is significantly larger than L/u′, but when
λ = 1 TL is about equal to L/u′. We have verified that TL scales with L/u′ both for
λ = 0 and λ = 1 and that the KS model yields (see figures 5a and 6a)

〈(xi(τ)− xi(0))2〉 ∼ u′2τ2 for τ� L

u′
(6.3)
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Figure 5. One-particle turbulent diffusion obtained for Fr = 0.0034 and Lkmax = 47, for steady
case λ = 0 (continuous line) and unsteady case λ = 1 (dashed line). (a) (1/L2)〈(x1(τ)− x1(0))2〉 as a
function of τu′/L, (b) 〈(x3(τ)− x3(0))2〉N2/u′2 as a function of τN/2π. Notice that our simulations
lose their accuracy after a few hundred buoyancy cycles, i.e. after a time between 100(2π/N) and
500(2π/N) according to the Froude number considered in this study. In this figure it is about
200(2π/N).
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Figure 6. One-particle turbulent diffusion obtained from KS with λ = 1 for different values of
Froude and Reynolds numbers (either changing N or u′/L or both): Fr = 0.0034, Lkmax = 47 and
∆0kmax = 0.1; Fr = 0.0034, Lkmax = 47 and ∆0kmax = 0.2; Fr = 0.0034, Lkmax = 47 and ∆0kmax = 0.4;
Fr = 0.0017, Lkmax = 47 and ∆0kmax = 0.2; Fr = 0.0011, Lkmax = 47 and ∆0kmax = 0.2; Fr = 0.0034,
Lkmax = 78 and ∆0kmax = 0.2; Fr = 0.0028, Lkmax = 22 and ∆0kmax = 0.2; Fr = 0.00064, Lkmax = 146
and ∆0kmax = 0.2; Fr = 0.0017, Lkmax = 77 and ∆0kmax = 0.1. (a) (1/L2)〈(x1(τ) − x1(0))2〉 as a
function of τu′/L, (b) 〈(x3(τ)− x3(0))2〉N2/u′2 as a function of τN/2π.

and

〈(xi(τ)− xi(0))2〉 ∼ u′Lτ for τ >
L

u′
. (6.4)

Hence, horizontal one-particle diffusion is found to have no dependence on N for
both λ = 0 and λ = 1.

In the vertical direction we retrieve the law (6.3) but for τ � 2π/N (and i = 3).
However, for larger times our results reveal a strong depletion in vertical diffusion
which is about the same for λ = 0 and λ = 1 (figure 5b). Having run this KS model for
many different cases (different Froude and Reynolds numbers), all such that Fr < 1,
we find that 〈(x3(τ)− x3(0))2〉 oscillates around the constant value

〈(x3(τ)− x3(0))2〉 ' u′2

N2
= L2Fr2 for

2π

N
� τ (6.5)

for both λ = 0 and λ = 1 (see figures 5b and 6b).
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Figure 7. Fr = 0.0028, Lkmax = 22, λ = 1. Continuous line: Lagrangian velocity correlation
〈uL3(t0)uL3(t0 +t)〉/u′2, dotted line: 〈(a3 − gΘ0)ẋ3〉/Nu′2. Dashed line: 〈(a3 − gΘ0)ẋ3〉/Nu′2 translated
in time to collapse with 〈uL3(t0)uL3(t0 + t)〉/u′2. The abscissa is non-dimensional time Nτ/2π.

A number of attempts to explain this capping of vertical one-particle-diffusion and
to predict the scaling (6.5) can be found in the literature. Most recently, Kaneda &
Ishida (2000) have obtained (6.5) by using the linearised Boussinesq equations and
Corrsin’s approximation. A very physical attempt is the one by Pearson et al. (1983)
who invoked equipartition between average kinetic and potential vertical energies. A
related approach may be based on the conservation of energy, and we discuss this
approach first before addressing vertical equipartition (see also van Haren 1993 for a
different concept of equipartition).

Multiplying (2.8) by ż (from now on we use the notation z = x3(τ) − x3(0) and
Θ0 = Θ(t0)) and integrating once gives the one-dimensional energy conservation
along the vertical

1
2
ż2 + 1

2
N2z2 =

∫ τ

τ=0

(a3 − gΘ0)ż dt′ + 1
2
ż(0)2. (6.6)

Then, averaging and making use of 〈ż2(τ)〉 = 〈ż(0)2〉 for τ > 0 yields

N2〈z(τ)2〉 = 2

∫ τ

τ=0

〈(a3 − gΘ0)ż〉 dt′. (6.7)

The capping of one-particle vertical diffusion is therefore related to the Lagrangian
correlation between the pressure acceleration a3 − gΘ0 and the vertical velocity. We
find that 〈(a3 − gΘ0)ż〉 can be made to collapse with N〈uL3(0)uL3(τ)〉 in our KS by a
simple translation in time (see figure 7). A time integration of results such as that of
figure 4(b) leads to ∫ τ

τ=0

〈uL3(0)uL3(τ)〉 dτ = 0 (6.8)

for τN � 2π but because of the time shift that distinguishes between 〈(a3 − gΘ0)ż〉
and N〈uL3(0)uL3(τ)〉, it turns out that∫ τ

τ=0

dt′ 〈(a3 − gΘ0)ż〉 ' 1
2
u′2 (6.9)

for τ � 2π/N. The capping of vertical diffusion with the right scaling (6.5) follows
from (6.7) and (6.9).

David Thomson (April 1999, private communication) derives the capping of one-
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Figure 8. (g2/N2)〈Θ0Θ(t)〉/u′2 as a function of the non-dimensional time τN/2π. These oscillations
around 0 are observed for the entire duration even of our longest simulations in time. Fr = 0.00064,
Lkmax = 146, λ = 1.

particle diffusion and (6.5) from the conservation of energy, but in three dimensions
rather than along the vertical direction only. From (2.4), (2.5) and (2.8) he gets

d

dt

(
〈 1

2
|uL|2〉+

N2

2
〈z2〉

)
= 〈a · uL〉 − g〈Θ0ż〉 (6.10)

and he then argues on the basis of statistical homogeneity that the Lagrangian average
〈a · uL〉 is equal to the Eulerian average of (1/ρ)u · ∇p′ which vanishes by incompress-
ibility and homogeneity. As stated in § 5 and shown in figure 3, (d/dt)〈 1

2
|uL|2〉 also

vanishes for t > t0, so that one is left with

d

dt

N2

2
〈z2〉 = −g〈Θ0ż〉. (6.11)

(See also Pearson 1980 for a three-dimensional argument and explanation of the cap-
ping of vertical one-particle diffusion based on (6.11).) Because 〈Θ0ż〉 = (d/dt)〈Θ0z〉
and z(τ = 0) = 0, integration of (6.11) from 0 to τ leads to

N2

2
〈z2〉 = −g〈Θ0z〉. (6.12)

Finally the Schwartz inequality 〈Θ0z〉2 6 〈Θ2
0〉〈z2〉 implies that

〈z2〉 6 4g2 〈Θ0
2〉

N4
. (6.13)

In the present KS model’s linear Boussinesq approximation where 〈Θ2
0〉 = 1

2
u′2N2/g2

(a special case of equation (3.24d) in Hanazaki & Hunt 1996), (6.12) leads to (6.5) by
using Θ(t)−Θ0 = (N2/g)z(t) (which follows from (2.7)), if and only if the assumption
is made that 〈Θ(t)Θ0〉 ' 0 or at least oscillates around 0 for τ � 2π/N. We have
been able to confirm the validity of this assumption in our KS to the extent that
〈Θ(t)Θ0〉 is indeed found to oscillate around 0 (see figure 8).

To summarize, formula (6.5) for the capping of vertical one-particle diffusion can
be obtained from one-dimensional energy conservation along the vertical if use is
made of

∫ τ
0
〈(a3− gΘ0)ż〉 dt′ = 1

2
u′2 which we have observed to hold in our KS model.

However (6.5) can also be obtained from three-dimensional energy conservation
without such detailed input concerning the correlation between vertical Lagrangian
pressure acceleration and vertical Lagrangian velocity, but by recourse to the relation
〈Θ(t)Θ0〉 ' 0 for large τ. We now show that (6.5) is not a consequence of vertical
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Figure 9. An arbitrary trajectory from an arbitrary realization, Fr = 0.0028, Lkmax = 22, λ = 0 but
effectively the same results are obtained with λ = 1. (a) Thicker line: (x3(τ) − x3(0))N/u′, thinner
line: (a3−gΘ0)u′/N. (b) Thicker line: (x3(τ)−x3(0))N/u′, thinner line: (a3−gΘ0)(x3(τ)−x3(0))1/u′2.
The abscissa is non-dimensional time τN/2π in both plots.

equipartition between average kinetic and potential energies, simply because such
equipartition does not hold.

To derive such equipartition from first principles, one multiplies (2.8) by z leading
to

1
2
ż2 − N2

2
z2 =

1

2

d2

dτ2

(
z2

2

)
− 1

2
(a3 − gΘ0)z. (6.14)

Vertical equipartition is the property that

1
2
〈ż2〉 =

N2

2

〈(
z + g

Θ0

N2

)2〉
(the potential energy is defined in terms of the departure from the equilibrium height
where Θ = 0), and a necessary and sufficient condition for it to hold is〈

d2

dτ2

z2

2

〉
= 〈(a3 − gΘ0)z〉+ 2g〈zΘ0〉+

g2

N2
〈Θ2

0〉.

Hence if vertical equipartition between average kinetic and potential energies is to
coexist with the capping of vertical diffusion we should expect

〈(a3 − gΘ0)z〉+ 2g〈zΘ0〉+
g2

N2
〈Θ2

0〉
to vanish (or more precisely to oscillate around 0). As illustrated in figure 9, (a3−gΘ0)
and z turn out to be strongly correlated and (a3 − gΘ0)z/u

′2 oscillates in time in a way
very close to zN/u′ for every trajectory, albeit with more amplification. In figure 10
we plot Lagrangian averages of a3 − gΘ0, z, z

2 and (a3 − gΘ0)z and we find, in
particular, that

〈(a3 − gΘ0)z〉 =
2N2

3
〈z2〉

for τ > 0. Hence, vertical equipartition becomes equivalent to the requirement that

2N2

3
〈z2〉+ 2g〈zΘ0〉+

g2

N2
〈Θ2

0〉 = 0
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Figure 10. Fr = 0.0028, Lkmax = 22, λ = 0 but effectively the same results are obtained with
λ = 1. (a) Continuous line: 〈x3(τ)−x3(0)〉N/u′, dashed line: 〈a3(τ)−gΘ0〉u′/N. (b) Logarithmic plot,
continuous line: 〈(x3(τ)− x3(0))2〉N2/u′2, dashed line: 〈(a3 − gΘ0)(x3 − x3(0))〉1/u′2. The abscissa is
non-dimensional time τN/2π in both plots.

which is in turn equivalent to

〈z2〉 =
3

2

u′2

N2

(not (6.5)!) on account of (6.12) and 〈Θ2
0〉 = 1

2
u′2N2/g2 (Hanazaki & Hunt 1996).

Our numerical observations 〈(a3−gΘ0)z〉 = 2
3
N2〈z2〉 and 〈z2〉 = u′2/N2 combined are

therefore evidence that there is no vertical equipartition between kinetic and potential
energies. In fact, as we show in the next paragraph, 〈(a3−gΘ0)z〉 = 2

3
N2〈z2(t)〉 implies

〈z2(t)〉 = 1
2
u′2.

Taking a Lagrangian average of (6.14), using 〈(a3 − gΘ0)z〉 = 2
3
N2〈z2〉 and the

result of Hanazaki & Hunt (1996) which we have confirmed in figure 2, namely

that 〈ż(τ)2〉 = 1
3
u′2 (= 1

2
u2

1(t = 0)) for τ � 2π/N, we obtain a linear second-order

differential equation for 〈z2〉 that is valid for τ� 2π/N:

3

2

d2

dτ2
〈z2〉+N2〈z2〉 = u′2. (6.15)

The solution of this equation is 〈z2〉 = (u′2/N2) + an oscillation of frequency pro-
portional to N, in agreement with our finding (6.5). We can say that it is because
〈(a3 − gΘ0)z〉 = 2

3
N2〈z2〉 that we have a well-defined capping of the vertical diffusion

without vertical equipartition.
The second category of attempts to explain and predict the scaling of 〈z2〉 is

based on assumptions concerning the statistics of a3 and special values for Θ0. In
these attempts (Csanady 1964; Pearson et al. 1983; Kimura & Herring 1996) Θ0

is taken equal to 0 for all the trajectories and a3 is modelled in terms of a white
noise, either by specifying a delta-correlation in time or by improving a flat power
spectrum. Hence, it is invariably effectively assumed that a3 − gΘ0 is statistically
uncorrelated with both z(τ) and ż(τ). In this KS model, and presumably also in
reality, the Lagrangian acceleration a3 − gΘ0 is very significantly correlated with the
vertical displacement and the Lagrangian velocity, and such assumptions are therefore
inappropriate.

It may be of some interest to draw this discussion of the capping of vertical
diffusion to a close with the following remark. By virtue of incompressibility the
pressure acceleration is given by (3.7) and is therefore modulated by the buoyancy
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force. Incompressibility is incorporated in our KS model trajectory by trajectory and
so is therefore the coupling between a3 and the buoyancy force. From the quantitative
expression of this coupling, (3.7), it follows that

|a3(τ)| 6 N
∫

dk
k2

3

k2
|ṽ2(k, t0)| (6.16)

implying that |a3(τ)| is bounded at all times by a constant independent of time in
our KS model. The existence of an upper bound for |a3(τ)| implies an upper bound
on |z(τ)| for every single trajectory. The proof of this statement proceeds from (2.8)
which we can square to write

|z̈|2 +N4|z|2 + 2z̈N2z = |a3 − gΘ0|2. (6.17)

If |a3(τ)|, and therefore |a3 − gΘ0|2, are bounded from above, then, because |z̈|2 is
positive, |z|2 cannot grow to +∞ without 2z̈N2z tending to −∞. This means that if
z → +∞, z̈ should tend to −∞ which is impossible and if z → −∞, z̈ should tend
to +∞ which is also impossible. Hence an upper bound for |a3(τ)| implies an upper
bound for |z| for every trajectory.

However, it must be pointed out that (2.8), and therefore also (6.17), are not
rigourously accurate representations of particle motion generated by the velocity field
(3.3) (3.4) (3.5) which has been obtained by solving the linear Boussinesq equations.
The Lagrangian equation (2.8) is rigorously compatible only with the nonlinear
Boussinesq equations. Nevertheless for small Froude numbers and for times τ smaller
than about L/u′ we can expect (2.8) to be valid in the context of our KS model. This
is indeed the case: it is on the basis of (2.8) that we have shown (6.5) and (6.9) to
be equivalent, and they are both obtained in our simulations; it is also because of
(2.8) and the linear approximation results 〈Θ2

0〉 = 1
2
u′2N2/g2 that 〈Θ(t)Θ0〉 oscillates

around 0 if and only if 〈z2〉 oscillates around u′2/N2, and again both these oscillatory
behaviours are quite faithfully observed in our simulations; and it is because of (2.8)
and 〈ż2(0)〉 = 1

3
u′2 that (2.8) is equivalent to 〈(a3 − gΘ0)z〉 = 2

3
N2〈z2〉 which is once

again clearly observed in our KS.
All the laws just mentioned are however observed up to times τ of about one or a

few L/u′, and our evidence indicates that they may break down in our simulations for
times larger than this, as can be seen for example at the right-hand side of figure 5(b)
(particularly, as may be expected, for λ = 1). The capping of vertical diffusion which is
well represented by linear mechanisms up to a time O(L/u′), may (or may not) require
nonlinear mechanisms to be sustained beyond times O(L/u′). This is a question we
cannot answer in this paper. That the capping of vertical diffusion must hold for all
times follows from David Thomson’s inequality (6.13).

In the linear approximation of the Boussinesq equations we can show that |a3| is
bounded for all times, but (6.17) is not guaranteed to be valid for very long times.
However, we can safely state that for the full nonlinear Boussinesq equations we have
shown that if |a3| is bounded, so is |z| for every Lagrangian particle trajectory.

7. Two-particle turbulent diffusion
We integrated twenty pairs of particle trajectories x(1)(t) and x(2)(t) in forty realiza-

tions of the KS non-decaying stratified turbulence detailed in § 5. The particle pairs
were initially all either in a horizontal plane or along the same vertical straight line
with the same initial separation ∆0 =

∣∣x(1)(t0)− x(2)(t0)
∣∣. Both configurations give the

same results and for economy of space we only present the results corresponding to
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Figure 11. Two-particle turbulent diffusion obtained for Fr = 0.0034 and Lkmax = 47, for steady
case λ = 0 (continuous line) and unsteady case λ = 1 (dashed line). (a) 〈∆x2

1〉/L2 as a function of
τu′/L, (b) 〈∆x2

3〉N2/(u′∆2
0) as a function of τN/2π.

particle pairs initially in a horizontal plane. We have also compared results for λ = 0
and λ = 1; figure 11 is evidence that two-particle diffusion in the horizontal plane
(figure 11a) and along the vertical direction (figure 11b) is the same for both values
of λ, and the different laws and régimes that we present in this section are effectively
the same for both λ = 0 and λ = 1.

We have calculated the Lagrangian two-particle statistics 〈∆x2
1(t)〉, 〈∆x2

2(t)〉 and
〈∆x2

3(t)〉 where ∆x(t) = (x(1)(t)−x(1)(t0))−(x(2)(t)−x(2)(t0)) and the averaging operation
〈· · ·〉 is the one defined in § 5. Such runs were conducted for many different Froude
and Reynolds numbers and different values of ∆0 and our results are summarized in
figures 12 and 13 for two-particle diffusion in the horizontal plane and figures 14, 15
and 16 for two-particle diffusion along the vertical axis x3.

The results for 〈∆x2
1(t)〉 and 〈∆x2

2(t)〉 are about the same so we only plot those for
〈∆x2

1(t)〉 (see figures 12 and 13). For small times τ (definitely much smaller than L/u′,
however possibly also much smaller than a length scale smaller than L/u′, but we
have not been able to determine this length scale, an issue which we leave open for
future investigation) we find that

〈∆x2
1(τ)〉 ' ∆2

0

L2

(
L

η

)4/3

u′2τ2 (7.1)

when ∆0 < η (figures 12a) and

〈∆x2
1(τ)〉 ' u′2

(
∆0

L

)2/3

τ2 (7.2)

when ∆0 > η (figure 12b). One can expect from a straightforward Taylor expansion
in the limit τ� L/u′ that

〈∆x2
1(τ)〉 ' (∆V0)

2τ2 (7.3)

where ∆V0 is a characteristic velocity difference associated with the scale ∆0. When
∆0 < η, ∆V0 may be approximated by ∆0 times a characteristic small-scale strain rate,
and if we interpret this strain rate to scale as (ε/ν)1/2 where ε is u′3/L and ν is related
to η by η ∼ (ν3/ε)3/4 then

∆V0 ∼ ∆0

L

(
L

η

)2/3

u′ for ∆0 < η (7.4)
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Figure 12. Small-time dependence of two-particle diffusion along horizontal direction x1, pairs of

particle are initially released in an horizontal plane. (a) ∆0 < η, (〈∆x2
1〉/∆2

0)(Lkmax )4/3 as function
of (u′/L)τ, and the different cases are: Fr = 0.0034, Lkmax = 47 and ∆0kmax = 0.1; Fr = 0.0034,
Lkmax = 47 and ∆0kmax = 0.2; Fr = 0.0034, Lkmax = 47 and ∆0kmax = 0.4; Fr = 0.0017, Lkmax = 47
and ∆0kmax = 0.2; Fr = 0.0011, Lkmax = 47 and ∆0kmax = 0.2; Fr = 0.0034, Lkmax = 77 and
∆0kmax = 0.2; Fr = 0.0028, Lkmax = 22 and ∆0kmax = 0.2; Fr = 0.0017, Lkmax = 77 and ∆0kmax = 0.1;
Fr = 0.0034, Lkmax = 47 and ∆0kmax = 0.2. (b) 〈∆x2

1〉(L/∆0)2/3 as function of (u′/L)τ and the different
cases are: Fr = 0.0017, Lkmax = 77 and ∆0kmax = 5; Fr = 0.0034, Lkmax = 47 and ∆0kmax = 10;
Fr = 0.0017, Lkmax = 47 and ∆0kmax = 10; Fr = 0.0028, Lkmax = 22 and ∆0kmax = 10; Fr = 0.0034,
Lkmax = 47 and ∆0kmax = 5; Fr = 0.0011, Lkmax = 47 and ∆0kmax = 10; Fr = 0.0017, Lkmax = 77
and ∆0kmax = 10.
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Figure 13. Two-particle turbulent diffusion along x1 obtained from KS with λ = 1: 〈∆x2
1〉/L2 as a

function of τu′/L. (a) Results for fixed Froude and Reynolds numbers Fr = 0.0034 and Lkmax = 47
and different values of ∆0, from top to bottom ∆0kmax = 10, 2, 1, 0.4, 0.2, 0.14, 0.1, 0.04, 0.02. (b)
Results for a given ∆0 and Reynolds number, ∆0kmax = 0.2 and Lkmax = 47 and different Froude
numbers Fr = 0.0037, 0.0017 and 0.0011.

and the scaling (7.1) is recovered. When, however, ∆0 > η, a K41 type argument (see
Frisch 1995, chap. 6) leads to

∆V0 ∼ u′
(
∆0

L

)1/3

for ∆0 > η (7.5)

and the scaling (7.2) is recovered too.
It is also found (see figure 13b) that 〈∆x2

1(τ)〉 is independent of N for all times τ
both smaller and larger than L/u′. For times τ > L/u′ the two particles are statistically
independent and we retrieve the large time relation

〈∆x2
1(τ)〉 ' 2Lu′τ. (7.6)
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Figure 14. Two-particle turbulent diffusion in the direction of stratification x3 obtained from KS,
λ = 1, for ∆0 < η and the pairs of particles are released from an horizontal plane, different cases
are those in figure 6: (a) 〈∆x2

3〉/∆2
0Fr

2(L/η)4/3 against τN/2π; (b) Same cases but with a different

normalization 〈∆x2
3〉/∆2

0Fr
2(L/η)4/3 as a function of τu′/L. The arrow points at τu′/L = 0.25.

It should be noted that we do not observe a τ3 scaling (see figure 13a) as Elliott
& Majda (1996), Fung & Vassilicos (1998) and Flohr & Vassilicos (2000) do for
isotropic turbulent-like velocity fields with a − 5

3
energy spectrum. However, L/η < 24

here, which is much smaller than the ratio L/η required by Elliott & Majda (1996),
Fung & Vassilicos (1998) and Flohr & Vassilicos (2000) to observe Richardson’s τ3

law over at least one or two or indeed many more decades.
Concerning two-particle diffusion along the vertical we expect that |∆x3| is bounded

for all times and for every pair of trajectories simply because |z| is bounded for all
times and for every trajectory as we have shown in the previous section. This is indeed
what we observe, but we also observe three different régimes in the time evolution of
〈∆x2

3(τ)〉. The first régime corresponds to times τ� 2π/N and in this range of small
times

〈∆x2
3(τ)〉 ' ∆2

0

L2

(
L

η

)4/3

u′2τ2 (7.7)

when ∆0 < η (figure 14a, b) but

〈∆x2
3(τ)〉 ' u′2

(
∆0

L

)2/3

τ2 (7.8)

when ∆0 > η (figure 15a, b). Once again, these scalings can be reduced to the leading
order of a Taylor expansion

〈∆x2
3(τ)〉 ' (∆V0)

2τ2 for τ� 2π

N
, (7.9)

with ∆V0 given by (7.4) and (7.5). Note that, in this régime, 〈∆x2
3(τ)〉 does not depend

on the Froude number and obeys the same scaling as diffusion in the horizontal
plane.

A second régime is observed for 2π/N � τ and τ smaller than a time scale itself
smaller than or equal to L/u′; in this régime the two-particle diffusion reaches a
plateau which is given by

〈∆x2
3(τ)〉 ' ∆2

0Fr
2

(
L

η

)4/3

(7.10)
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Figure 15. Two-particle turbulent diffusion in the direction of stratification x3 obtained from KS,
λ = 1, for ∆0 > η and the pairs of particles are released from an horizontal plane, different
cases are: Fr = 0.0017, Lkmax = 77 and ∆0kmax = 5, Fr = 0.0034, Lkmax = 47 and ∆0kmax = 10,
Fr = 0.0017, Lkmax = 47 and ∆0kmax = 10, Fr = 0.0030, Lkmax = 22 and ∆0kmax = 10, Fr = 0.0034,
Lkmax = 47 and ∆0kmax = 5, Fr = 0.0011, Lkmax = 47 and ∆0kmax = 10, Fr = 0.0017, Lkmax = 77
and ∆0kmax = 10. (a) 〈∆x2

3〉(L/∆0)2/3(N/u′)2 against τN/2π. (b) Same as (a) but with different

normalizations: 〈∆x2
3〉(L/∆0)2/3(N/u′)2 against τu′/L. The arrow points at τu′/L = 0.25.

for ∆0 < η (figure 14a, b) and

〈∆x2
3(τ)〉 '

(
∆0

L

)2/3

L2Fr2 (7.11)

for ∆0 > η (figure 15a, b). In terms of the characteristic velocity difference ∆V0 given
by (7.4) and (7.5), the two scalings (7.10) and (7.11) may be interpreted as deriving
from the single scaling

〈∆x2
3(τ)〉 ' (∆V0)

2

N2
when

2π

N
� t� L

u′
. (7.12)

Note that the scaling laws (7.10), (7.11) and (7.12) are valid modulo an oscillation
around this average constant value ∆V 2

0 /N
2.

Finally, the third régime appears at large times τ � L/u′, when the two particles
become independent and we expect 〈∆x2

3(τ)〉 = 2〈(x3(τ)−x3(0))2〉 (= 2〈z2〉). Assuming
that (6.5) remains valid for times τ � L/u′, it then follows from (6.5) that a second
plateau is reached which is independent of ∆0 and is given by

〈∆x2
3(τ)〉 ' 2L2Fr2 when

L

u′
� τ. (7.13)

The beginning of this second plateau can be seen in figure 16 and more clearly in
figure 17, but we were not able to carry out simulations with sufficient accuracy for
times long enough to provide evidence for the coefficient 2 in (7.13). It can also be
seen in figure 17 that the departure from the first two-particle diffusion plateau (7.12)
to reach the second two-particle diffusion plateau (7.13) coincides with the time when
the two particles start decorrelating in the horizontal plane, i.e. by the end of the
two-particle τ2 régime. A careful examination of figure 6 in Kimura & Herring (1996)
and of a similar result by Heppe (1997) shows that the plateau in two-particle vertical
diffusion observed by these authors is at a much smaller value than 2L2Fr2 = 2u′2/N2,
in agreement with the first plateau observed in this paper. These authors did not take
their simulations far enough in time to probe the existence of a second plateau.
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Figure 16. Comparison of one- and two-particle turbulent diffusions in the direction of stratification
x3 obtained from KS, λ = 1. Upper curves are 〈(x3(τ)− x3(0))2〉N2/u′2 against τu′/L, lower curves
are 〈∆x2

3〉N2/u′2 against τu′/L. The different cases are: Fr = 0.0028, Lkmax = 22 and ∆0kmax = 0.2,
Fr = 0.0017, Lkmax = 47 and ∆0kmax = 0.2 and Fr = 0.00064, Lkmax = 146 and ∆0kmax = 0.2.
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Figure 17. One- and two-particle diffusion, Fr = 0.0011 (Frη = 0.02), Lkmax = 47 and ∆0kmax = 0.2.
Solid line: 〈x2

1〉/L2, long dashed line: 〈x2
3〉/L2, short dashed line: 〈∆x2

1〉/L2, dotted line: 〈∆x2
3〉/L2;

normalized time is τu′/L.

8. Conclusion
We have developed and used a KS Lagrangian model of turbulent diffusion in

stably stratified non-decaying turbulence to predict one- and two-particle turbulent
diffusion in both horizontal and vertical directions concurrently and in accordance
with incompressibility trajectory by trajectory. Unlike Lagrangian stochastic models
of turbulent diffusion in stably stratified turbulence, vertical and horizontal diffusion
are not decoupled in this KS model. The present KS model has been developed
for Reynolds numbers large enough to neglect the viscous terms in the Boussinesq
equations, for times τ smaller than O(L/u′), for Froude numbers small enough to
also neglect the nonlinear terms in the Boussinesq equations and for non-decaying
stably stratified turbulence. The vanishing one- and two-particle vertical diffusivities
(equations (6.5), (7.12) and (7.13)) are obtained for times t− t0 � 2π/N and in spite
of the non-decaying mean-square vertical velocity. However this severe depletion of
vertical diffusion is accompanied (but not explained!) by a reduced mean-square
vertical velocity with respect to horizontal mean-square velocities (see also Vincent,
Michaud & Meneguzzi 1996).
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Our KS model’s main results are illustrated in the summary figure 17. We have also
shown that the capping of vertical diffusion is closely linked to the behaviour of the
Lagrangian vertical pressure acceleration which is generated by the three-dimensional
velocity field, and that this capping and its scalings are therefore accounted for
by the full three-dimensional incompressible stratified flow. The Lagrangian verti-
cal pressure acceleration is strongly correlated with the Lagrangian vertical posi-
tion in such a way that 〈z2〉 = u′2/N2 is accompanied by an absence of vertical
equipartition between Lagrangian vertical potential and kinetic energies. In partic-
ular, in the context of the linear Boussinesq equations (which are used to develop
the present KS model), the Lagrangian vertical pressure acceleration is bounded
because the wavemodes of the horizontal and vertical velocity fields simply oscil-
late in time and are therefore bounded for all times. In the case of the nonlinear
Boussinesq equations we have shown analytically that if the Lagrangian vertical ac-
celeration a3 is bounded for all times so is z(t) for every trajectory. However, the proof
that a3 remains bounded in the nonlinear case is beyond the scope of the present
paper.

Two-particle vertical diffusion displays two different plateaux, and the transition
between the two plateaux corresponds to the time when particle pairs start moving
apart in the horizontal, significantly enough for the τ2 short-time laws (7.7) and (7.8)
to break down. Furthermore, the scaling of the first two-particle vertical diffusion
plateau depends on whether ∆0 is larger or smaller than η. The second two-particle
vertical diffusion plateau occurs much later in time when the two particles have
become statistically uncorrelated, and is therefore independent of ∆0 and η and equal
to twice the one-particle vertical diffusion plateau, i.e. 2u′2/N2.

David Thomson’s inequality (6.13) shows that vertical diffusion must be capped
for all times, at least when the effects of molecular diffusivity are neglected. Our KS
model is based on the linear Boussinesq equations and can reproduce this capping
of diffusion along with 〈z2〉 = u′2/N2 up to a time of order L/u′. From times larger
than O(L/u′), nonlinear effects may (or may not) become important, and the capping
of vertical diffusion may require these nonlinear effects to persist. Hence, the full
explanation of 〈z2〉 = u′2/N2 for long times remains a challenge and this challenge
must be addressed in a much broader context where both decaying and non-decaying
stratified turbulence are considered, and where the effects of molecular diffusivity
are incorporated too. To this challenge, this paper adds the task of explaining the
two-plateaux structure of two-particle vertical diffusion.†

We are grateful to D. Thomson for incisive comments that have very significantly
improved this paper, to C. Cambon and Y. Kaneda for interesting discussions and
reading of an early version of this paper and to N. A. Malik for assistance with an early
code. These very beneficial interactions with Thomson, Cambon and Kaneda took
place during the turbulence programme at the Isaac Newton Institute in Cambridge,
UK. We also acknowledge financial support from the European Commission under
contracts ERBFMBICT961542 and FMRX-CT98-0175, the EPSRC and the Royal
Society.

† We have obtained preliminary results which show that our conclusions concerning the exis-
tence of cappings for one- and two-particle diffusions, including the double-plateau structure of
two-particle diffusion, are qualitatively unaffected by the precise form of the large-wavenumber
energy spectrum.
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